4.5 Article

Mathematical Modeling of Electrocardiograms: A Numerical Study

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 38, 期 3, 页码 1071-1097

出版社

SPRINGER
DOI: 10.1007/s10439-009-9873-0

关键词

12-Lead electrocardiogram; Mathematical modeling; Numerical simulation; Bidomain equation; Ionic model; Heart-torso coupling; Monodomain equation; Sensitivity analysis

资金

  1. INRIA

向作者/读者索取更多资源

This paper deals with the numerical simulation of electrocardiograms (ECG). Our aim is to devise a mathematical model, based on partial differential equations, which is able to provide realistic 12-lead ECGs. The main ingredients of this model are classical: the bidomain equations coupled to a phenomenological ionic model in the heart, and a generalized Laplace equation in the torso. The obtention of realistic ECGs relies on other important features-including heart-torso transmission conditions, anisotropy, cell heterogeneity and His bundle modeling-that are discussed in detail. The numerical implementation is based on state-of-the-art numerical methods: domain decomposition techniques and second order semi-implicit time marching schemes, offering a good compromise between accuracy, stability and efficiency. The numerical ECGs obtained with this approach show correct amplitudes, shapes and polarities, in all the 12 standard leads. The relevance of every modeling choice is carefully discussed and the numerical ECG sensitivity to the model parameters investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据