4.5 Article

Analysis of MEG Background Activity in Alzheimer's Disease Using Nonlinear Methods and ANFIS

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 37, 期 3, 页码 586-594

出版社

SPRINGER
DOI: 10.1007/s10439-008-9633-6

关键词

Adaptive-network-based fuzzy interference system (ANFIS); Alzheimer's disease; Lempel-Ziv complexity; Magnetoencephalogram; Sample entropy

向作者/读者索取更多资源

This study was designed to analyze the magnetoencephalogram (MEG) background activity from 20 patients with probable Alzheimer's disease (AD) and 21 control subjects by using two nonlinear methods: sample entropy (SampEn), and Lempel-Ziv complexity (LZC). The former quantifies the signal regularity, and the latter is a complexity measure. The signals were acquired with a 148-channel whole-head magnetometer placed in a magnetically shielded room. Our results show that MEG recordings are less complex and more regular in patients with AD than in control subjects. Significant differences between both groups were found in 16 MEG channels with SampEn and in 134 with LZC (p < 0.01, Student's t test with Bonferroni's correction). Using receiver operating characteristic curves with a leave-one-out cross-validation procedure, accuracies of 70.73 and 78.05% were reached with SampEn and LZC, respectively. Additionally, we wanted to assess whether both nonlinear methods and an adaptive-network-based fuzzy interference system (ANFIS) could improve AD diagnosis. With this classifier, an accuracy of 85.37% was achieved. Our findings suggest the usefulness of our methodology to increase our insight into AD.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据