4.5 Article

A Simulation of Vessel-Clamp Interaction: Transient Closure Dynamics

期刊

ANNALS OF BIOMEDICAL ENGINEERING
卷 37, 期 9, 页码 1772-1780

出版社

SPRINGER
DOI: 10.1007/s10439-009-9748-4

关键词

Fluid-solid interaction; Endothelium; Intramural wall stress; Wall shear stress; Surgical clamps

资金

  1. National Institute of HealthNational Heart, Lung, and Blood Institute [HL055554-11, HL087235]

向作者/读者索取更多资源

Cross-clamping of aorta is routinely performed in cardiac surgery. The objective of this study was to simulate cross-clamping of the aorta to elucidate the perturbation of stresses in the wall (solid mechanics) and lumen of the vessel (fluid mechanics). Models of the aorta and clamp were created in Computer Assisted Design and Finite Element Analysis packages. The vessel wall was considered as a non-linear anisotropic material while the fluid was simulated as Newtonian with pulsatile flow. The clamp was applied to produce total occlusion in approximately 1 s. A cylindrical and rectangular geometry for the clamp were considered. High jet speed and flow reversal were demonstrated during clamping. It was found that the clamp design and vessel wall anisotropy affected both the fluid wall shear stress (WSS) and solid stresses in vessel wall. The maximum wall stresses increased by about 170 and 220% during closure in the cases of plate and cylindrical clamps, respectively. The plate clamp design was superior for reduction of both solid stresses as well as fluid shear stresses. The cylindrical clamp causes much larger stresses than the plate clamp in each of the stress components; e.g., radial compression of -180 vs. -50 kPa. Vibrations, flow and WSS oscillations were detected immediately before total vessel occlusion. The present findings provide valuable insights into the mode of tissue injury during clamping and may also be useful for improving surgical clamp designs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据