4.6 Article

Highly efficient organic-inorganic poly(3,4-ethylenedioxythiophene)-molybdenum trioxide nanocomposite electrodes for electrochemical supercapacitor

期刊

JOURNAL OF APPLIED PHYSICS
卷 100, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2356788

关键词

-

向作者/读者索取更多资源

In this paper, we report a highly efficient organic-inorganic nanocomposite electrode with enhanced double layer capacitance, which has been synthesized using 3,4-ethylenedioxythiophene and crystalline molybdenum trioxide (MoO3) in the presence of an external oxidizing agent. The interlayer spacing of MoO3 upon intercalation expands from 6.93 to 13.46 A and is followed by an exfoliation and restacking process. The resulting nanocomposite is characterized by powder x-ray diffraction, scanning electron microscopy, transmission electron microscopy, x-ray photoelectron spectroscopy, and four probe conductivity measurements. The application potential of this nanocomposite as an electrode material for electrochemical supercapacitors has been investigated, highlighting the unusual enhancement of double layer capacitance of poly(3,4-ethylenedioxythiphene) (PEDOT-MoO3) nanocomposites (similar to 300 F g(-1)) compared to that of pristine MoO3 (similar to 40 mF g(-1)). The improved electrochemical performance is attributed to the intercalation of electronically conducting PEDOT between MoO3 layers with enhanced bidimensionality and an increase in the surface area. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据