4.6 Article

Cardioprotective effects of acute and chronic opioid treatment are mediated via different signaling pathways

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.00233.2006

关键词

ischemia-reperfusion; G protein-coupled receptors; rate-pressure product; end-diastolic pressure; morphine

资金

  1. NHLBI NIH HHS [HL-08311] Funding Source: Medline

向作者/读者索取更多资源

A 5-day exposure to morphine exerts a profound cardioprotective phenotype in murine hearts. In the present study, we examined mechanisms by which morphine generates this effect, exploring the roles of G(i) and G(s) proteins, PKA, PKC, and beta-adrenergic receptors (beta-AR) in acute and chronic opioid preconditioning. Langendorff-perfused hearts from placebo, acute morphine (AM; 10 mu mol/l)-, or chronic morphine (CM)- treated mice (75-mg pellet, 5 days) underwent 25-min ischemia and 45-min reperfusion. After reperfusion, placebo-treated hearts exhibited marked contractile and diastolic dysfunction [rate-pressure product (RPP), 40 +/- 4% baseline; end-diastolic pressure (EDP), 33 +/- 3 mmHg], whereas AM hearts showed significant improvement in recovery of RPP and EDP (60 +/- 3% and 23 +/- 4 mmHg, respectively; P < 0.05 vs. placebo). Furthermore, CM hearts demonstrated a complete return of diastolic function and significantly greater recovery of contractile function (83 +/- 3%, P < 0.05 vs. both placebo and AM). Pretreatment with Gi protein inhibitor pertussis toxin abolished AM protection while partially attenuating CM recovery (P < 0.05 vs. placebo). Treatment with G(s) inhibitor NF-449 did not affect AM preconditioning yet completely abrogated CM preconditioning. Similarly, PKA inhibition significantly attenuated the ischemia-tolerant state afforded by CM, whereas it was ineffective in AM hearts. PKC inhibition with chelerythrine was ineffective in CM hearts while completely abrogating AM preconditioning. Moreover, whereas beta(1)-AR blockade with CGP-20712A failed to alter recovery in CM hearts, the beta(2)-AR antagonist ICI-118,551 significantly attenuated postischemic recovery. These data describe novel findings whereby CM preconditioning is mediated by a PKC-independent pathway involving PKA, beta(2)-AR, and Gs proteins, whereas AM preconditioning is mediated via Gi proteins and PKC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据