4.4 Article

DIFFUSION MODELS AND STEADY-STATE APPROXIMATIONS FOR EXPONENTIALLY ERGODIC MARKOVIAN QUEUES

期刊

ANNALS OF APPLIED PROBABILITY
卷 24, 期 6, 页码 2527-2559

出版社

INST MATHEMATICAL STATISTICS
DOI: 10.1214/13-AAP984

关键词

-

向作者/读者索取更多资源

Motivated by queues with many servers, we study Brownian steady-state approximations for continuous time Markov chains (CTMCs). Our approximations are based on diffusion models (rather than a diffusion limit) whose steady-state, we prove, approximates that of the Markov chain with notable. precision. Strong approximations provide such limitless approximations for process dynamics. Our focus here is on steady-state distributions, and the diffusion model that we propose is tractable relative to strong approximations. Within an asymptotic framework, in which a scale parameter n is taken large, a uniform (in the scale parameter) Lyapunov condition imposed on the sequence of diffusion models guarantees that the gap between the steady-state moments of the diffusion and those of the properly centered and scaled CTMCs shrinks at a rate of root n. Our proofs build on gradient estimates for solutions of the Poisson equations associated with the (sequence of) diffusion models and on elementary martingale arguments. As a by-product of our analysis, we explore connections between Lyapunov functions for the fluid model, the diffusion model and the CTMC.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据