4.6 Article

Stellar populations of early-type galaxies in different environments -: II.: Ages and metallicities

期刊

ASTRONOMY & ASTROPHYSICS
卷 457, 期 3, 页码 809-U40

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20064845

关键词

galaxies : abundances; galaxies : elliptical and lenticular; cD-Galaxy : stellar content; Galaxy : formation

向作者/读者索取更多资源

Aims. This is the second paper of a series devoted to the study of the stellar content of early-type galaxies. The goal of the series is to set constraints on the evolutionary status of these objects Methods. We use a new set of models that include an improved stellar library (MILES) to derive simple stellar population (SSP)-equivalent parameters in a sample of 98 early-type galaxies. The sample contains galaxies in the field, poor groups, and galaxies in the Virgo and Coma clusters. Results. We find that low-density environment galaxies span a larger range in SSP age and metallicity than their counterparts in high density environments, with a tendency for lower sigma galaxies to be younger. Early-type galaxies in low-density environments appear on average similar to 1.5 Gyr younger and more metal rich than their counterparts in high density environments. The sample of low-density environment galaxies shows an age-metallicity relation in which younger galaxies are found to be more metal rich, but only when metallicity is measured with a Fe-sensitive index. Conversely, there is no age-metallicity relation when the metallicity is measured with a Mg sensitive index. The mass-metallicity relation is only appreciable for the low-density environment galaxies when the metallicity is measured with a Mg-sensitive index, and not when the metallicity is measured with other indicators. On the contrary, this relation exists for the high-density environment galaxies independent of the indicator used to measure the metallicity. Conclusions. This suggests a dependence of the mass-metallicity relation on the environment of the galaxies. Our data favour a scenario in which galaxies in low density environments have suffered a more extended star formation history than the galaxies in the Coma cluster, which appear to host more homogenous stellar populations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据