4.7 Article

A unified model for bipolar outflows from young stars

期刊

ASTROPHYSICAL JOURNAL
卷 649, 期 2, 页码 845-855

出版社

IOP PUBLISHING LTD
DOI: 10.1086/506513

关键词

ISM : jets and outflows; stars : pre-main-sequence; stars : winds, outflows

向作者/读者索取更多资源

We develop a unified model for molecular outflows in star formation. The model incorporates essential features expected of the primary wind, which is thought to be driven magnetocentrifugally from close to the central stellar object, and the ambient core material shaped by anisotropic magnetic support. The primary wind is modeled as a toroidally magnetized fast outflow moving radially away from the origin, with an angle-dependent density distribution: a dense axial jet surrounded by a more tenuous wide-angle wind, as expected in the X-wind model. If dynamically significant magnetic fields are present, the star-forming core will settle faster along the field lines than across, forming a toroid-like structure. We approximate the structure with a singular isothermal toroid whose density distribution can be obtained analytically. The interaction of the laterally stratified wind and the ambient toroid is followed using the Zeus2D magnetohydrodynamics (MHD) code. We find that the lobes produced by the interaction resemble many systematics observed in molecular outflows from very young stars, ranging from Class 0 to I sources. In particular, both the dense axial jet and the wide-angle wind participate in the wind-ambient interaction. In our model, the jet- and wind-driven pictures of molecular outflows are unified. We discuss the observational implications of the unified picture, including the possibility of detecting the primary jet/wind directly.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据