4.8 Article

Biodegradability and biocompatibility of a pH- and thermo-sensitive hydrogel formed from a sulfonamide-modified poly(ε-caprolactone-co-lactide)-poly(ethylene glycol)-poly(ε-caprolactone-co-lactide) block copolymer

期刊

BIOMATERIALS
卷 27, 期 30, 页码 5178-5185

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2006.05.038

关键词

pH; and thermo-sensitive hydrogel; sulfonamide-modified block copolymer; biodegradability; biocompatibility

向作者/读者索取更多资源

A pH- and thermo-sensitive block copolymer was synthesized by adding pH-sensitive sulfamethazine oligomers (SMOs) to either end of a thermo-sensitive poly(epsilon-caprolactone-co-lactide)-poly(ethylene glycol)-poly(epsilon-caprolactone-co-lactide) (PCLA-PEG-PCLA) block copolymer. The resulting pH- and thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymer solution did not form a gel at high pH (pH 8.0) or at increased temperatures (ca. 70 degrees C), but did form a stable gel under physiological conditions (pH 7.4 and 37 degrees C). The degradation rate of the pH- and thermo-sensitive block copolymer decreased substantially compared with the control block copolymer of PCLA-PEG-PCLA, due to the buffering effect of the SMO-PCLA-PEG PCLA-SMO sulfonamide groups on the acidic monomer-induced rapid degradation of PCLA-PEG-PCLA. This suitable sol-gel transition and sustained biodegradability of the pH- dand thermo-sensitive SMO-PCLA-PEG-PCLA-SMO block copolymers resolves two of the major drawbacks associated with thermo-sensitive block copolymers, namely premature gelation and rapid degradation. interestingly, SMO-PCLA-PEG PCLA-SMO showed no evidence of cytotoxicity in vitro. However, subcutaneous injection of the pH- and thermo-sensitive block copolymer solution (20 wt% in PBS at pH 8.0) into Sprague-Dawley (SD) rats resulted in rapid, stable gel formation, with the injected hydrogel being completely degraded in vivo in just 6 weeks. The injected hydrogel in vivo presented a typical acute inflammation within 2 weeks, although chronic inflammation was not observed during the first 6-week period. As such, the pH- and thermo-sensitive hydrogel of the SMO-PCLA-PEG-PCLA-SMO block copolymer is a suitable candidate for use in drug delivery systems and cell therapy. (c) 2006 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据