4.7 Article

Lithium stabilizes the polarized lens epithelial phenotype and inhibits proliferation, migration, and epithelial mesenchymal transition

期刊

JOURNAL OF PATHOLOGY
卷 210, 期 2, 页码 249-257

出版社

WILEY
DOI: 10.1002/path.2049

关键词

cataract; lens epithelial cells; posterior capsule opacification; lithium; cell polarity; epithelial mesenchymal transition; lens epithelial phenotype; TGF beta

资金

  1. NEI NIH HHS [R01 EY0-3177] Funding Source: Medline

向作者/读者索取更多资源

Posterior capsule opacification (PCO) is a common complication of cataract surgery caused by epithelial mesenchymal transition (EMT) and aberrant lens cell growth. One path to prevention depends on maintaining the quiescent lens epithelial phenotype. Here we report that lithium chloride (LiCl) is a potent stabilizer of the lens epithelial phenotype. In lens epithelial explants (controls), at low cell density, cells readily depolarized, spread out, and proliferated. By contrast, in the presence of LiCl, cells did not spread out or exhibit migratory behaviour. Using concentrations of 1-30 mm LiCl we also showed that cell proliferation is inhibited in a dose-dependent manner. Confocal microscopy and immunohistochemistry for ZO-1 and E-cadherin showed that LiCl treatment maintained tight junctions at the apical margins of cells. Taken together with measurements of cell heights, this showed that the cells in LiCl-treated explants maintained the apical basolateral polarity and cobblestone-like packing that is characteristic of lens epithelial cells in vivo. Significantly, the effects of LiCl also extended to blocking the potent EMT/cataract-promoting effects of transforming growth factor beta (TGF beta) on lens epithelial cells. In TGF beta-treated explants, cells progressively dissociated from one another, taking on various elongated spindle shapes and strongly expressing alpha-smooth muscle actin (alpha-SMA). These features are characteristic of PCO. In both rat and human capsulorhexis explants, LiCl treatment effectively blocked the accumulation of alpha-SMA and maintained the cells in a polarized, adherent, cobblestone-packed monolayer. These findings highlight the feasibility of applying molecular strategies to stabilize lens epithelial cells and prevent aberrant differentiation and growth that leads to cataract. Copyright (c) 2006 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据