4.7 Article

Ferredoxin limits cyclic electron flow around PSI (CEF-PSI) in higher plants-stimulation of CEF-PSI enhances non-photochemical quenching of Chl fluorescence in transplastomic tobacco

期刊

PLANT AND CELL PHYSIOLOGY
卷 47, 期 10, 页码 1355-1371

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcl005

关键词

cyclic electron flow; ferredoxin; non-photochemical quenching (NPQ); photosynthesis; transplastomic tobacco; water-water cycle

向作者/读者索取更多资源

We tested the hypothesis that ferredoxin (Fd) limits the activity of cyclic electron flow around PSI (CEF-PSI) in vivo and that the relief of this limitation promotes the non-photochemical quenching (NPQ) of Chl fluorescence. In transplastomic tobacco (Nicotiana tabacum cv Xanthi) expressing Fd from Arabidopsis (Arabidopsis thaliana) in its chloroplasts, the minimum yield (F-o) of Chl fluorescence was higher than in the wild type. F-o was suppressed to the wild-type level upon illumination with far-red light, implying that the transfer of electrons by Fd-quinone oxidoreductase (FQR) from the chloroplast stroma to plastoquinone was enhanced in transplastomic plants. The activity of CEF-PSI became higher in transplastomic than in wild-type plants under conditions limiting photosynthetic linear electron flow. Similarly, the NPQ of Chl fluorescence was enhanced in transplastomic plants. On the other hand, pool sizes of the pigments of the xanthophyll cycle and the amounts of PsbS protein were the same in all plants. All these results supported the hypothesis strongly. We conclude that breeding plants with an NPQ of Chl fluorescence increased by an enhancement of CEF-PSI activity might lead to improved tolerance for abiotic stresses, particularly under conditions of low light use efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据