4.4 Article

Convergence of the discrete dipole approximation. I. Theoretical analysis

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAA.23.002578

关键词

-

类别

向作者/读者索取更多资源

We perform a rigorous theoretical convergence analysis of the discrete dipole approximation (DDA). We prove that errors in any measured quantity are bounded by a sum of a linear term and a quadratic term in the size of a dipole d when the latter is in the range of DDA applicability. Moreover, the linear term is significantly smaller for cubically than for noncubically shaped scatterers. Therefore, for small d, errors for cubically shaped particles are much smaller than for noncubically shaped ones. The relative importance of the linear term decreases with increasing size; hence convergence of DDA for large enough scatterers is quadratic in the common range of d. Extensive numerical simulations are carried out for a wide range of d. Finally, we discuss a number of new developments in DDA and their consequences for convergence. (c) 2006 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据