4.4 Article

Low-loss resonant modes in deterministically aperiodic nanopillar waveguides

出版社

OPTICAL SOC AMER
DOI: 10.1364/JOSAB.23.002265

关键词

-

类别

向作者/读者索取更多资源

Quasiperiodic Fibonacci-like and fractal Cantor-like single- and multiple-row nanopillar waveguides are investigated theoretically by employing the finite-difference time-domain method. It is shown that resonant modes of the Fibonacci and Cantor waveguides can have a Q factor comparable with that of a point-defect resonator embedded in a periodic nanopillar waveguide, while the radiation is preferably emitted into the waveguide direction, thus improving coupling to an unstructured dielectric waveguide located along the structure axis. This is especially so when the dielectric waveguide introduces a small perturbation in the aperiodic structure, breaking the structure symmetry while staying well apart from the main localization area of the resonant mode. The high-Q factor and increased coupling with the external dielectric waveguide suggest using the proposed deterministically aperiodic nanopillar waveguides in photonic integrated circuits. (c) 2006 Optical Society of America.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据