4.7 Article

Development of simple sequence repeat markers specific for the Lr34 resistance region of wheat using sequence information from rice and Aegilops tauschii

期刊

THEORETICAL AND APPLIED GENETICS
卷 113, 期 6, 页码 1049-1062

出版社

SPRINGER
DOI: 10.1007/s00122-006-0364-5

关键词

-

向作者/读者索取更多资源

Hexaploid wheat (Triticum aestivum L.) originated about 8,000 years ago from the hybridization of tetraploid wheat with diploid Aegilops tauschii Coss. containing the D-genome. Thus, the bread wheat D-genome is evolutionary young and shows a low degree of polymorphism in the bread wheat gene pool. To increase marker density around the durable leaf rust resistance gene Lr34 located on chromosome 7DS, we used molecular information from the orthologous region in rice. Wheat expressed sequence tags (wESTs) were identified by homology with the rice genes in the interval of interest, but were monomorphic in the 'Arina' x 'Forno' mapping population. To derive new polymorphic markers, bacterial artificial chromosome (BAC) clones representing a total physical size of similar to 1 Mb and belonging to four contigs were isolated from Ae. tauschii by hybridization screening with wheat ESTs. Several BAC clones were low-pass sequenced, resulting in a total of similar to 560 kb of sequence. Ten microsatellite sequences were found, and three of them were polymorphic in our population and were genetically mapped close to Lr34. Comparative analysis of marker order revealed a large inversion between the rice genome and the wheat D-genome. The SWM10 microsatellite is closely linked to Lr34 and has the same allele in the three independent sources of Lr34: 'Frontana', 'Chinese Spring', and 'Forno', as well in most of the genotypes containing Lr34. Therefore, SWM10 is a highly useful marker to assist selection for Lr34 in breeding programs worldwide.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据