4.4 Article

Kinetic properties of a MNB/DYRK1A mutant suitable for the elucidation of biochemical pathways

期刊

BIOCHEMISTRY
卷 45, 期 39, 页码 12011-12019

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bi060632j

关键词

-

资金

  1. NICHD NIH HHS [HD43960, HD38295] Funding Source: Medline

向作者/读者索取更多资源

Minibrain kinase/dual-specificity tyrosine phosphorylation regulated kinase 1A (MNB/DYRK1A) is a proline/arginine-directed serine/threonine kinase implicated in the learning deficits of Down syndrome. Epigallocatechin-3-gallate ( EGCG), the major tea polyphenolic compound, is a potent MNB/DYRK1A inhibitor. In this study, we investigated the mechanism of EGCG inhibition of MNB/DYRK1A using a combination of genetic and biochemical approaches. In the testing system using MNB/DYRK1A promoted Gli 1-dependent transcription as the readout, NIH3T3 cells expressing EGCG resistant MNB/DYRK1A mutant R21 were found to acquire EGCG resistance for a wide range of drug concentrations. Mutant R21 harbors a single K465R substitution, which produces a 3-fold gain in the EGCG resistance in vitro. However, the gain in the EGCG resistance alone cannot fully interpret the effectiveness of mutant R21 in suppressing EGCG in cultured cells. Kinetic analysis suggests that EGCG functions as a noncompetitive inhibitor against ATP. Interestingly, the K465R mutation changes the mode of EGCG inhibition on MNB/DYRK1A so that it becomes a competitive inhibitor against ATP. This competitive mode of EGCG inhibition coupled with high intracellular ATP concentrations and an elevated EGCG resistance are likely to be the basis for the resistant property of mutant R21 in cultured cells. The K465R mutation apparently transforms the intramolecular interactions required for MNB/DYRK1A catalysis. This mutant would also be valuable for the elucidation of the mechanisms of MNB/DYRK1A-catalyzed reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据