4.5 Article

Transformation of hydrogel-based inverse opal photonic sensors from FCC to L11 during swelling

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 39, 页码 19300-19306

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0638540

关键词

-

向作者/读者索取更多资源

The structural evolution of Bragg diffracting inverse opal hydrogel sensors during swelling is directly observed by two-photon laser scanning fluorescence microscopy and compared to predictions from finite element analysis. A fluorescently labeled pH-sensitive hydrogel is UV-polymerized in a dried polystyrene colloidal crystal template, which is etched to yield an inverse opal. Fluorescence imaging of the hydrogel at different pH values reveals an inhomogeneous deformation of the FCC array of aqueous pores. The pores elongate along the sample normal direction and collapse along the sample parallel directions, consistent with the Bragg response, which indicates a 1-D increase in the interlayer distance. Interconnects between the pores serve as anchor points during hydrogel expansion into the pores. Pinning of the hydrogel to the substrate causes a change of the hydrogel lattice symmetry during deformation, from FCC (ABC stacking) to L1(1) (ABCA'B'C' stacking). Reconstructed cross-sections confirm that a 1-D increase in the interlayer distance along the substrate normal direction is responsible for the diffraction response of an inverse opal hydrogel sensor. Comparison with predictions from finite element analysis shows qualitative agreement, although the experimental mesostructure is significantly more deformed than the calculated data, due to buckling in the experimental system that is not captured by the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据