4.8 Article

Functional analyses and molecular modeling of two c-Kit mutations responsible for imatinib secondary resistance in GIST patients

期刊

ONCOGENE
卷 25, 期 45, 页码 6140-6146

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.onc.1209639

关键词

imatinib secondary resistance; gastrointestinal stromal tumors (GIST); molecular modeling

资金

  1. Telethon [GGP030358] Funding Source: Medline

向作者/读者索取更多资源

Imatinib-acquired resistance related to the presence of secondary point mutations has become a frequent event in gastrointestinal stromal tumors. Here, transient transfection experiments with plasmids carrying two different KIT-acquired point mutations were performed along with immunoprecipitation of total protein extracts, derived from imatinib-treated and untreated cells. The molecular mechanics/Poisson Boltzmann surface area computational techniques were applied to study the interactions of the wild-type and mutated receptors with imatinib at the molecular level. Biochemical analyses showed KIT phosphorylation in cells transfected with vectors carrying the specific mutant genes. Imatinib treatment demonstrated that T670I was insensitive to the drug at all the applied concentrations, whereas V654A was inhibited by 6 mu M of imatinib. The modeling of the mutated receptors revealed that both substitutions affect imatinib-binding site, but to a different extent: T670I substantially modifies the binding pocket, whereas V654A induces only relatively confined structural changes. We demonstrated that T670I and V654A cause indeed imatinib-acquired resistance and that the former is more resistant to imatinib than the latter. The application of molecular simulations allowed us to quantify the interactions between the mutated receptors and imatinib, and to propose a molecular rationale for this type of drug resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据