4.8 Article

Synthesis and electrochemical properties of olivine-type LiFePO4/C composite cathode material prepared from a poly(vinyl alcohol)-containing precursor

期刊

JOURNAL OF POWER SOURCES
卷 160, 期 2, 页码 1361-1368

出版社

ELSEVIER
DOI: 10.1016/j.jpowsour.2006.02.097

关键词

Li-ion batteries; cathode material; olivine; LiFePO4; poly(vinyl alcohol); carbon coating

向作者/读者索取更多资源

Olivine structure LiFePO4/C composite powders are synthesized as cathode materials for Li-ion batteries via a conventional solid-state reaction. Improvement in electrochemical performance has been achieved by using poly(vinyl alcohol) as the carbon sources for the as-prepared materials. The influence of the heat treatment on the physical and the electrochemical properties of LiFePO4/C materials is investigated. To examine the effect of added carbon content on the properties of materials, a one-step heat treatment has been employed with control of the PVA content in the precursor. Six samples were prepared with 0, 1, 3, 5, 10 and 30 wt.% PVA added to the raw materials. The particle size of LiFePO4 decreases as the carbon content increases. Materials with medium carbon contents have a small charge-transfer resistance and thus exhibit superior electrochemical performance. Interestingly, for a LiFePO4/C Composite with a low PVA content, an unusual plateau at 4.3 V is observed. It is considered that this is due to the Fe3+/Fe4+ redox reaction of Fe3+ compounds that are present as an impurity. For samples with a high PVA amount, a thicker carbon coating provides an obstacle to improve the electrochemical properties. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据