4.7 Review

ReSETting PP2A tumour suppressor activity in blast crisis and imatinib-resistant chronic myelogenous leukaemia

期刊

BRITISH JOURNAL OF CANCER
卷 95, 期 7, 页码 775-781

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.bjc.6603317

关键词

PP2A; SET; BCR/ABL; CML; forskolin; leukaemia

类别

资金

  1. NCI NIH HHS [CA095512, R01 CA095512] Funding Source: Medline

向作者/读者索取更多资源

The deregulated kinase activity of p210-BCR/ABL oncoproteins, hallmark of chronic myelogenous leukaemia (CML), induces and sustains the leukaemic phenotype, and contributes to disease progression. Imatinib mesylate, a BCR/ABL kinase inhibitor, is effective in most of chronic phase CML patients. However, a significant percentage of CML patients develop resistance to imatinib and/or still progresses to blast crisis, a disease stage that is often refractory to imatinib therapy. Furthermore, there is compelling evidence indicating that the CML leukaemia stem cell is also resistant to imatinib. Thus, there is still a need for new drugs that, if combined with imatinib, will decrease the rate of relapse, fully overcome imatinib resistance and prevent blastic transformation of CML. We recently reported that the activity of the tumour suppressor protein phosphatase 2A (PP2A) is markedly inhibited in blast crisis CML patient cells and that molecular or pharmacologic re-activation of PP2A phosphatase led to growth suppression, enhanced apoptosis, impaired clonogenic potential and decreased in vivo leukaemogenesis of imatinib-sensitive and -resistant (T315I included) CML-BC patient cells and/or BCR/ABL(+) myeloid progenitor cell lines. Thus, the combination of PP2A phosphatase-activating and BCR/ABL kinase-inhibiting drugs may represent a powerful therapeutic strategy for blast crisis CML patients.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据