4.7 Article

Biorecognition through layer-by-layer polyelectrolyte assembly: In-situ hybridization on living cells

期刊

BIOMACROMOLECULES
卷 7, 期 10, 页码 2742-2750

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm060266j

关键词

-

向作者/读者索取更多资源

Encapsulated cells were formed from the assembly of cationic and anionic alternating layers using a number of polyelectrolyte-based systems. Chitosan, alginate, hyaluronic acid, and oligonucleotides were used as polyelectrolytes to encapsulate individual E. coli cells, which were used as a model. Zeta potential measurements taken for both chitosan/alginate and chitosan/hyaluronic acid systems indicate successful layer-by-layer (LbL) deposition and gave full reversal of the surface change eight times. Layer adsorption was further observed by fluorescence microscopy, and, through a newly developed protocol for sample preparation, transmission electron microscopy micrographs clearly showed the presence of LbL assembly on the outer layer of the cell membrane, in the nanometer range. A second generation of E. coli cells could be grown from encapsulated first generation cells, demonstrating that the cellular activity was not affected by the presence of polyelectrolyte multilayers. Hybridization between attached oligonucleotide sequences and the complementary sequence was demonstrated by both fluorescence spectroscopy and microscopy. Fluorescence energy transfer data recorded after hybrid formation showed that at a molar ratio of 10: 20 (donor: acceptor), Q and I were 92.3% and 52.5%, respectively, which suggests that fluorescein fluorescence was quenched by 92.3% and that the fluorescence of rhodamine was enhanced by 52.5%. Oligonucleotide incorporation was stabilized by deposition of four alternating layers, hence offering not only the potential use of the encapsulated cell as a bio-recognition system but also its application in a number of fields such as oligonucleotide delivery, gene therapy, and the use of DNA as an immunocompatible coating.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据