4.6 Article

Monolithic microfabricated ion trap chip design for scaleable quantum processors

期刊

NEW JOURNAL OF PHYSICS
卷 8, 期 -, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.1088/1367-2630/8/10/232

关键词

-

向作者/读者索取更多资源

A design is proposed for a novel ion trap quantum processor chip, microfabricated using a process based on planar silica-on-silicon techniques. The trap electrodes are of gold-coated silica and are spaced by highly doped silicon in a monolithic structure. This design allows a unit aspect-ratio trap with an ion-electrode separation below 100 mu m, when using current fabrication techniques. The trapping potential is modelled and the operating parameters required to achieve motional frequencies of a few MHz are calculated. RF loss and the resultant heating of the trap chip are not found to be a factor limiting the trap's operation. This monolithic unit aspect-ratio trap is therefore expected to exhibit a deep potential well, high trap efficiency, and a low RF loss, when compared to other microfabricated traps. This technological approach is in principle scaleable to complex devices, and may form the basis for large-scale ion trap quantum processors.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据