4.7 Article

Algorithmic regularization with velocity-dependent forces

期刊

出版社

BLACKWELL PUBLISHING
DOI: 10.1111/j.1365-2966.2006.10854.x

关键词

stellar dynamics; methods : N-body simulations; celestial mechanics

向作者/读者索取更多资源

Algorithmic regularization uses a transformation of the equations of motion such that the leapfrog algorithm produces exact trajectories for two-body motion as well as regular results in numerical integration of the motion of strongly interacting few-body systems. That algorithm alone is not sufficiently accurate and one must use the extrapolation method for improved precision. This requires that the basic leapfrog algorithm be time-symmetric, which is not directly possible in the case of velocity-dependent forces, but is usually obtained with the help of the implicit mid-point method. Here, we suggest an alternative explicit algorithmic regularization algorithm which can handle velocity-dependent forces. This is done with the help of a generalized mid-point method to obtain the required time symmetry, thus eliminating the need for the implicit mid-point method and allowing the use of extrapolation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据