4.6 Article

Cilia-like structures and polycystin-1 in osteoblasts/osteocytes and associated abnormalities in skeletogenesis and Runx2 expression

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 41, 页码 30884-30895

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M604772200

关键词

-

资金

  1. NIAMS NIH HHS [P01-AR46798, R01-AR049712, P01 AR046798, R01 AR049712] Funding Source: Medline
  2. NIDDK NIH HHS [P50 DK057301, R01 DK083303, P50-DK057301] Funding Source: Medline

向作者/读者索取更多资源

We examined the osteoblast/osteocyte expression and function of polycystin-1 (PC1), a transmembrane protein that is a component of the polycystin-2 (PC2)-ciliary mechano-sensor complex in renal epithelial cells. We found that MC3T3-E1 osteoblasts and MLO-Y4 osteocytes express transcripts for PC1, PC2, and the ciliary proteins Tg737 and Kif3a. Immunohistochemical analysis detected cilia-like structures in MC3T3-E1 osteoblastic and MLO-Y4 osteocyte-like cell lines as well as primary osteocytes and osteoblasts from calvaria. Pkd1(m1Bei) mice have inactivating missense mutations of Pkd1 gene that encode PC1. Pkd1m1Bei homozygous mutant mice demonstrated delayed endochondral and intramembranous bone formation, whereas heterozygous Pkd1(m1Bei) mutant mice had osteopenia caused by reduced osteoblastic function. Heterozygous and homozygous Pkd1m1Bei mutant mice displayed a gene dose-dependent decrease in the expression of Runx2 and osteoblast-related genes. In addition, overexpression of constitutively active PC1 C-terminal constructs in MC3T3-E1 osteoblasts resulted in an increase in Runx2 P1 promoter activity and endogenous Runx2 expression as well as an increase in osteoblast differentiation markers. Conversely, osteoblasts derived from Pkd1m1Bei homozygous mutant mice had significant reductions in endogenous Runx2 expression, osteoblastic markers, and differentiation capacity ex vivo. Co-expression of constitutively active PC1 C-terminal construct into Pkd1m1Bei homozygous osteoblasts was sufficient to normalize Runx2 P1 promoter activity. These findings are consistent with a possible functional role of cilia and PC1 in anabolic signaling in osteoblasts/ osteocytes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据