4.7 Article

Low sticking probability in the nonactivated dissociation of N2 molecules on W(110)

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 14, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2355672

关键词

-

向作者/读者索取更多资源

The six-dimensional potential energy surface for the dissociation of N-2 molecules on the W(110) surface has been determined by density functional calculations and interpolated using the corrugation reducing procedure. Examination of the resulting six-dimensional potential energy surface shows that nonactivated paths are available for dissociation. In spite of this, the dissociation probability goes to a very small value when the impact energy goes to zero and increases with increasing energy, a behavior usually associated with activated systems. Statistics on the dynamics indicate that this unconventional result is a consequence of the characteristics of the potential energy surface at long distances. Furthermore, two distinct channels are identified in the dissociation process, namely, a direct one and an indirect one. The former is responsible for dissociation at high energies. The latter, which includes long-lasting dynamic trapping in the vicinity of a potential well above the W top position, is the leading mechanism at low and intermediate energies. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据