4.7 Article

Hydroxyapatite organofunctionalized with silylating agents to heavy cation removal

期刊

JOURNAL OF COLLOID AND INTERFACE SCIENCE
卷 302, 期 2, 页码 485-491

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcis.2006.07.010

关键词

organofunctionalization; alkoxysilanes; adsorption; hydroxyapatite

向作者/读者索取更多资源

Hydroxyapatite surface silylation with organosilane derivatives (H(3)CObSiR, R being the corresponding organic moieties -CH2CH2CH2NH,), -CH2CH2CH2NHCH2CH2NH2, and -CH2CH2CH2NHCH2CH2NHCH2CH2NH2, was carried out to yield organofunctionalized nanomaterials, named HApR1, HApR2. and HApR3, respectively. The products were characterized by elemental analysis, infrared spectroscopy, X-ray diffraction. thermogravimetry, and P-31 and C-13 NMR in the solid state. The amounts of groups grafted onto surfaces were 0.75 +/- 0.05, 2.35 +/- 0.14, and 2.48 +/- 10.18 mmol g(-1) for HApRx (x = 1,2, 3) surfaces, respectively. Linear correlations between elemental analysis, mass loss, 31 p chemical shift data, and the characteristics of the chain of each alkoxysilane were observed. The organic basic centers distributed onto the external surface have the ability to adsorb divalent copper and cobalt cations from aqueous solution. The degree of adsorption obtained from batchwise processes showed the best performance of these synthesized nanomaterials when compared with the pristine hydroxyapatite. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据