4.8 Article

Chitosan as a polymer for pH-induced DNA capture in a totally aqueous system

期刊

ANALYTICAL CHEMISTRY
卷 78, 期 20, 页码 7222-7228

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac060391l

关键词

-

资金

  1. NHGRI NIH HHS [R01 HG002613] Funding Source: Medline

向作者/读者索取更多资源

A novel DNA solid-phase extraction protocol based on the pH-dependent charge of chitosan was developed specifically for low-volume DNA extraction on microchips. The method uses chitosan-coated beads to extract DNA at pH 5 and release it from the chitosan at pH 9. DNA extraction efficiency as high as 92% could be attained, even from complex samples such as human blood containing significant amounts of protein. Using this method, PCR inhibitors that are typically used in DNA extraction procedures (e.g., chaotropic salts, 2-propanol) can be avoided, making the method more conducive to downstream sample processing using PCR. A high-density multichannel microchip device was then fabricated and the microchannels coated with chitosan for DNA extraction in an open channel configuration without the need for an additional stationary phase. This design provided a relatively high surface area-to-volume ratio for extraction, while retaining the low flow resistance commensurate with open channels. With a flow rate of similar to 1 mu L/min during the extraction, the total extraction time was less than 10 min, with most of the DNA recovered in the first 2 mu L of elution buffer. Using the microchip device, extraction efficiencies for lambda-phage DNA and human genomic DNA were as high as 67 and 63%, respectively. Human genomic DNA from whole blood samples could be extracted in 10 min with an extraction efficiency of 75 +/- 4% (n = 3), and the purified DNA was suitable for PCR amplification of a fragment of the gelsolin gene. The combination of an entirely aqueous DNA extraction method with a high-density, low-flow resistance microchannel pattern sets the stage for future integration into microfluidic genomic analysis devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据