4.2 Article

Variants in mitochondrial tRNAGlu, tRNAArg, and tRNAThr may influence the phenotypic manifestation of deafness-associated 12S rRNA A1555G mutation in three Han Chinese families with hearing loss

期刊

AMERICAN JOURNAL OF MEDICAL GENETICS PART A
卷 140A, 期 20, 页码 2188-2197

出版社

WILEY-LISS
DOI: 10.1002/ajmg.a.31434

关键词

mutation; mtDNA; nuclear modifier genes; haplotypes; expressivity; tRNA variants; mitochondrial 12S rRNA; hearing loss; Chinese; modulate; aminoglycosides; deafness; penetrance; translation

资金

  1. NIDCD NIH HHS [R01DC05230] Funding Source: Medline
  2. NINDS NIH HHS [R01NS44015] Funding Source: Medline

向作者/读者索取更多资源

We report here on the clinical, genetic, and molecular characterization of three Han Chinese pedigrees with aminoglycoside-induced and nonsyndrornic hearing loss. Clinical evaluation revealed the variable phenotype of hearing loss including severity, age-at-onset, audiometric configuration in these subjects. Penetrances of hearing loss in BJ107, BJ108, and BJ109 pedigrees are 35%, 63%, and 67%, respectively. Mutational analysis of the complete mitochondrial genomes in these pedigrees showed the identical homoplasmic A1555G mutation and distinct sets of mitochondrial DNA (mtDNA) variants belonging to haplogroups N, F, and M, respectively. Of these variants, the A14693G mutation in the tRNA(Glu), the T15908C mutation in the tRNA(Thr), and the T10454C mutation in the tRNA (Arg) are of special interest as these mutations occur at positions which are highly evolutionarily conserved nucleotides of corresponding tRNAs. These homoplasmic mtDNA mutations were absent among 156 unrelated Chinese controls. The A14693G and T10454C mutations occur at the highly conserved bases of the T psi C-loop of tRNA(Glu) and tRNA(Arg), respectively. Furthermore, the T15908C mutation in the tRNA(Thr) disrupts a highly conserved A-U base-pairing at the D-stem of this tRNA. The alteration of structure of these tRNAs by these mtDNA mutations may lead to a failure in tRNA metabolism, thereby causing impairment of mitochondrial translation. Thus, mitochondrial dysfunctions, caused by the A1555G mutation, would be worsened by these mtDNA mutations. Therefore, these mtDNA mutations may have a potential modifier role in increasing the penetrance and expressivity of the deafness-associated 12S rRNA A1555G mutation in those Chinese pedigrees. (c) 2006 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据