4.8 Article

Gastric stimulation in obese subjects activates the hippocampus and other regions involved in brain reward circuitry

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0601977103

关键词

brain activation; obesity

资金

  1. NCRR NIH HHS [M01RR 10710, M01 RR010710] Funding Source: Medline
  2. NIAAA NIH HHS [R01 AA009481, AA9481, Y1AA3009] Funding Source: Medline
  3. NIDA NIH HHS [R01 DA006891, DA6891, R01 DA006278, DA6278] Funding Source: Medline

向作者/读者索取更多资源

The neurobiological mechanisms underlying overeating in obesity are not understood. Here, we assessed the neurobiological responses to an Implantable Gastric Stimulator (IGS), which induces stomach expansion via electrical stimulation of the vagus nerve to identify the brain circuits responsible for its effects in decreasing food intake. Brain metabolism was measured with positron emission tomography and 2-deoxy-2[F-18]fluoro-D-glucose in seven obese subjects who had the IGS implanted for 1-2 years. Brain metabolism was evaluated twice during activation (on) and during deactivation (off) of the IGS. The Three-Factor Eating Questionnaire was obtained to measure the behavioral components of eating (cognitive restraint, uncontrolled eating, and emotional eating). The largest difference was in the right hippocampus, where metabolism was 18% higher (P < 0.01) during the on than off condition, and these changes were associated with scores on emotional eating, which was lower during the on than off condition and with uncontrolled eating, which did not differ between conditions. Metabolism also was significantly higher in right anterior cerebellum, orbitofrontal cortex, and striatum during the on condition. These findings corroborate the role of the vagus nerve in regulating hippocampal activity and the importance of the hippocampus in modulating eating behaviors linked to emotional eating and lack of control. IGS-induced activation of regions previously shown to be involved in drug craving in addicted subjects (orbitofrontal cortex, hippocampus, cerebellum, and striatum) suggests that similar brain circuits underlie the enhanced motivational drive for food and drugs seen in obese and drug-addicted subjects, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据