4.8 Article

Suppression of hypoxia-induced HIF-1α and of angiogenesis in endothelial cells by myo-inositol trispyrophosphate-treated erythrocytes

出版社

NATL ACAD SCIENCES
DOI: 10.1073/pnas.0607109103

关键词

allosteric effector; hemoglobin; tumor growth; VEGF

向作者/读者索取更多资源

Allosteric regulation of oxygen delivery by RBCs may have significant effects on tumor growth. Indeed, angiogenesis, the formation of new blood vessels, is induced in growing tumors by low oxygen partial pressure. Hypoxia-inducible genes are switched on, among which are the VEGF gene and its receptors. Most important, under hypoxia, hypoxia-inducible factor la has a significantly prolonged half-life and up-regulates a number of hypoxia genes. Human microvascular endothelial cells (MECs), when subjected in vitro to hypoxia, align to form vessel-like structures as in the angiogenic process. We report here that, when cultured in hypoxic conditions in the presence of human RBCs loaded with a new membrane-permeant allosteric effector of Hb, myo-inositol trispyrophosphate (ITPP), endothelial cells (ECs) do not align, i.e., do not form vessel-like structures, because the loaded RBCs are capable of releasing under hypoxia more oxygen than their normal counterparts. Levels of VEGF and of hypoxia-inducible factor la, elevated in the human MECs under hypoxia, were dramatically reduced or even suppressed in the presence of the ITPP-loaded RBCs. Treatment of these ECs directly with free ITPP at different concentrations had no effect on their ability to undertake angiogenesis. Incubation with ITPP enhances the capacity of Hb to release bound oxygen, leading to higher oxygen tension in the hypoxic environment, thus inhibiting hypoxia-induced angiogenesis. These observations are suggestive of a potential in vivo role of ITPP-loaded, low-O-2-affinity RBCs in cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据