4.8 Article

Effects of the alternating backbone configuration on the secondary structure and self-assembly of β-peptides

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 128, 期 41, 页码 13539-13544

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja063890c

关键词

-

向作者/读者索取更多资源

Heterochiral homo-oligomers with alternating backbone configurations were constructed by using the different enantiomers of the cis- and trans-2-aminocyclopentanecarboxylic acid (ACPC) monomers. Molecular modeling and the spectroscopic techniques (NMR, ECD, and VCD) unequivocally proved that the alternating heterochiral cis-ACPC sequences form an H10/12 helix, where extra stabilization can be achieved via the cyclic side chains. The ECD and TEM measurements, together with molecular modeling, revealed that the alternating heterochiral trans-ACPC oligomers tend to attain a polar-strand secondary structure in solution, which can self-assemble into nanostructured fibrils. The observations indicate that coverage of all the possible secondary structures (various helix types and strand-mimicking conformations) can be attained with the help of cyclic beta-amino acid diastereomers. A relationship has been established between the backbone chirality pattern and the prevailing secondary structure, which underlines the role of stereochemical control in the beta-peptide secondary structure design and may contribute to future biological applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据