4.5 Article

Molecular dynamics simulations of electrolyte solutions at the (100) goethite surface

期刊

JOURNAL OF PHYSICAL CHEMISTRY B
卷 110, 期 41, 页码 20491-20501

出版社

AMER CHEMICAL SOC
DOI: 10.1021/jp0636569

关键词

-

向作者/读者索取更多资源

Molecular dynamics simulations of electrolyte solutions in contact with a neutral (100) goethite (alpha-FeOOH) surface were used to probe the structure of the mineral-water interface and gain insight into the adsorption properties of monovalent ions. Three electrolyte solutions were considered: NaCl, CsCl, and CsF. The electrolyte ions were chosen to cover a range of ionic sizes and affinities for the aqueous phase. The molecular dynamics simulations indicate the presence of a structured interfacial region resulting from the strong interaction of water with the mineral surface. The specific arrangement and preferred orientation of water that arise from this interaction create adsorption sites in the interfacial region, i.e., as far as 15 angstrom away from the surface, and hence give rise to a strong correlation between the water and ion distributions. The structure of the hydrated ion, its effect on the water arrangement at the interface, and the strength of the ion-water bond are found to be key factors that determine the location and extent of ion adsorption at the interface. Additionally, in all simulations, we find a build up of positive charges near the surface due to cation adsorption, which is compensated by an accumulation of anions in the next few angstroms. This creates an excess of negative charges, which is in turn compensated by an excess of positive charges, and so on. As we modeled a neutral surface, the structure of the electrolyte distribution arises from the complex interplay of the interactions between the surface, water, and the electrolyte ions rather than from the need to neutralize a surface charge. In addition, our simulations indicate that the electrolyte distribution does not resemble that of a classical electrical double layer. Indeed, our calculations predict the presence of several condensed layers and oscillations in the net charge away from the surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据