4.6 Article

Glutathionylation induces the dissociation of 1-Cys D-peroxiredoxin non-covalent homodimer

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 42, 页码 31736-31742

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M602188200

关键词

-

向作者/读者索取更多资源

1-Cys peroxiredoxins (1-Cys Prxs) are antioxidant enzymes that catalyze the reduction of hydroperoxides into alcohols using a strictly conserved cysteine. 1-Cys B-Prxs, homologous to human PrxVI, were recently shown to be reactivated by glutathione S-transferase (GST) pi via the formation of a GST-Prx heterodimer and Prx glutathionylation. In contrast, 1-Cys D-Prxs, homologous to human PrxV, are reactivated by the glutaredoxin-glutathione system through an unknown mechanism. To investigate the mechanistic events that mediate the 1-Cys D-Prx regeneration, interaction of the Prx with glutathione was studied by mass spectrometry and NMR. This work reveals that the Prx can be glutathionylated on its active site cysteine. Evidences are reported that the glutathionylation of 1-Cys D-Prx induces the dissociation of the Prx non-covalent homodimer, which can be recovered by reduction with dithiothreitol. This work demonstrates for the first time the existence of a redox-dependent dimer-monomer switch in the Prx family, similar to the decamer-dimer switch for the 2-Cys Prxs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据