4.6 Article

Regulation of myosin V processivity by calcium at the single molecule level

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 42, 页码 31987-31994

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M605181200

关键词

-

资金

  1. NHLBI NIH HHS [HL38113] Funding Source: Medline

向作者/读者索取更多资源

Calcium can affect myosin V (myoV) function in at least two ways. The full-length molecule, which adopts a folded inhibited conformation in EGTA, becomes extended and active in the presence of calcium. Calcium also dissociates one or more calmodulin molecules from the extended neck. Here we investigated at the single molecule level how calcium regulates the processive run length of full-length myosin V (dFull) and a truncated dimeric construct (dHMM), which cannot adopt the folded conformation. The processivity of dFull and dHMM is tightly controlled by the calcium and calmodulin concentration, with shorter runs occurring at higher calcium concentration. The data indicate that a calcium-dependent dissociation of calmodulin from the neck region of myoV terminates its processive run. dFull showed unexpected processive movement in EGTA, suggesting that a small population of extended, active molecules are in equilibrium with the inhibited, folded form. Single turnover assays showed that the ATPase activity of the folded full-length molecule is inhibited by more than 50-fold compared with the extended molecule. The results imply that activation and termination of the processive runs of myoV can be accomplished by multiple mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据