4.6 Article

Oxylipin profiling of the hypersensitive response in Arabidopsis thaliana -: Formation of a novel oxo-phytodienoic acid-containing galactolipid, arabidopside E

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 281, 期 42, 页码 31528-31537

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M604820200

关键词

-

向作者/读者索取更多资源

Oxidation products of unsaturated fatty acids, collectively known as oxylipins, function as signaling molecules in plants during development, wounding, and insect and pathogen attack. Certain oxylipins are also known to have direct cytotoxic effects on pathogens. We used inducible expression of bacterial avirulence proteins in planta to study the involvement of oxylipins in race-specific defense against bacterial pathogens. We demonstrate that recognition of the Pseudomonas syringae avirulence protein AvrRpm1 induces 9- and 13-lipoxygenase-dependent oxylipin synthesis in Arabidopsis thaliana. The major oxylipins accumulated were jasmonic acid, 12-oxo-phytodienoic acid, and dinor-oxo-phytodienoic acid. The majority of the newly formed oxylipins (> 90%) was found to be esterified to glycerolipids, whereby 12-oxo-phytodienoic acid and dinor-oxo-phytodienoic acid were found to be esterified to a novel galactolipid. The structure of the substance was determined as a monogalactosyldiacylglycerol containing two 12-oxo-phytodienoic acids and one dinor-oxo-phytodienoic acid acyl chain and was given the trivial name arabidopside E. This substance accumulated to surprisingly high levels, 7 - 8% of total lipid content, and was shown to inhibit growth of a bacterial pathogen in vitro. Arabidopside E was formed also after recognition of the avirulence protein AvrRpt2, suggesting that this could be a conserved feature of defense reactions against bacterial pathogens. In conclusion, the data presented suggest a role of enzymatically formed oxylipins, especially the octadecanoids and arabidopside E in race-specific resistance against bacterial pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据