4.2 Article

Concomitant real-time monitoring of intracellular reactive oxygen species and mitochondrial membrane potential in individual living promonocytic cells

期刊

JOURNAL OF IMMUNOLOGICAL METHODS
卷 316, 期 1-2, 页码 27-41

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.jim.2006.07.013

关键词

reactive oxygen species (ROS); mitochondrial membrane potential (MMP); individual blood cells; Live Cell Array (LCA)

向作者/读者索取更多资源

Reactive oxygen species (ROS) have recently been shown to be involved in multiple physiological responses through modulation of signaling pathways. Inappropriate production of these radicals, and their metabolites, leads to the development of various pathologies. Free radicals can induce both positive and negative effects in cells, and their metabolic pathways are very complex. Hence, it is crucial to be able to simultaneously and directly determine their production dynamics and concentrations in individual living cells, in physiological or pathological states, and in response to drugs. The aim of the present study was to monitor in real time the rates of ROS generation in promonocytic cells upon stimulation with hydrogen peroxide and oxidized lipid. Quantitative detection of intracellular ROS concentration in intact living U937 cells was performed by fluorescence intensity (FI) and polarization (FP) measurements utilizing the Optical LiveCell (TM) Array technology. The dihydro derivative probes of fluorescein (DCF-DA) and rhodamine (DHR123) were used to assess the intracellular levels of ROS. Each probe molecule exhibited a characteristic FI and FP in its non-fluorescent or oxidized form. Analysis of the temporal relationship between the kinetics of ROS generation and the onset of changes in mitochondrial membrane potential shows high variability within a cell population with regard to both processes. The data demonstrated that temporal measurement of ROS generation, in identifiable individual cells, reveals kinetic behavior that otherwise would be undetected. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据