4.7 Article

Temperature and structural changes of water clusters in vacuum due to evaporation

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 125, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.2357591

关键词

-

向作者/读者索取更多资源

This paper presents a study on evaporation of pure water clusters. Molecular dynamics simulations between 20 ns and 3 mu s of clusters ranging from 125 to 4096 molecules in vacuum were performed. Three different models (SPC, TIP4P, and TIP5P) were used to simulate water, starting at temperatures of 250, 275, and 300 K. We monitored the temperature, the number of hydrogen bonds, the tetrahedral order, the evaporation, the radial distribution functions, and the diffusion coefficients. The three models behave very similarly as far as temperature and evaporation are concerned. Clusters starting at a higher temperature show a higher initial evaporation rate and therefore reach the point where evaporation stop (around 240 K) sooner. The radius of the clusters is decreased by 0.16-0.22 nm after 0.5 mu s (larger clusters tend to decrease their radius slightly more), which corresponds to around one evaporated molecule per nm(2). The cluster temperature seems to converge towards 215 K independent of cluster size, when starting at 275 K. We observe only small structural changes, but the clusters modeled by TIP5P show a larger percentage of molecules with low diffusion coefficient as t ->infinity, than those using the two other water models. TIP4P seems to be more structured and more hydrogen bonds are formed than in the other models as the temperature falls. The cooling rates are in good agreement with experimental results, and evaporation rates agree well with a phenomenological expression based on experimental observations. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据