4.5 Article

Metal inhibition of human N-methylpurine-DNA glycosylase activity in base excision repair

期刊

TOXICOLOGY LETTERS
卷 166, 期 3, 页码 237-247

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.toxlet.2006.06.647

关键词

glycosylase; base excision repair; metal ions; inhibition of DNA repair; carcinogens

资金

  1. NCI NIH HHS [CA72079] Funding Source: Medline

向作者/读者索取更多资源

Cadmium (Cd2+), nickel (Ni2+) and cobalt (Co2+) are human and/or animal carcinogens. Zinc (Zn2+) is not categorized as a carcinogen, and rather an essential element to humans. Metals were recently shown to inhibit DNA repair proteins that use metals for their function and/or structure. Here we report that the divalent ions Cd2+, Ni2+, and Zn2+ can inhibit the activity of a recombinant human N-methylpurine-DNA glycosylase (MPG) toward a deoxyoligonucleotide with ethenoadenine (epsilon A). MPG removes a variety of toxic/mutagenic alkylated bases and does not require metal for its catalytic activity or structural integrity. At concentrations starting from 50 to 1000 mu M, both Cd2+ and Zn2+ showed metal-dependent inhibition of the MPG catalytic activity. Ni2+ also inhibited MPG, but to a lesser extent. Such an effect can be reversed with EDTA addition. In contrast, Co2+ and Mg2+ did not inhibit the MPG activity in the same dose range. Experiments using HeLa cell-free extracts demonstrated similar patterns of inactivation of the EA excision activity by the same metals. Binding of MPG to the substrate was not significantly affected by Cd2+, Zn2+, and Ni2+ at concentrations that show strong inhibition of the catalytic function, suggesting that the reduced catalytic activity is not due to altered MPG binding affinity to the substrate. Molecular dynamics (MD) simulations with Zn2+ showed that the MPG active site has a potential binding site for Zn2+ formed by several catalytically important and conserved residues. Metal binding to such a site is expected to interfere with the catalytic mechanism of this protein. These data suggest that inhibition of MPG activity may contribute to metal genotoxicity and depressed repair of alkylation damage by metals in vivo. (c) 2006 Published by Elsevier Ireland Ltd.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据