4.5 Article

Determination of three-dimensional in situ stresses from anelastic strain recovery measurement of cores at great depth

期刊

TECTONOPHYSICS
卷 426, 期 1-2, 页码 221-238

出版社

ELSEVIER
DOI: 10.1016/j.tecto.2006.02.019

关键词

anelastic strain recovery; in situ stress; three-dimensional measurement; great depth; isotropic rock

向作者/读者索取更多资源

In order to examine whether the anelastic strain recovery (ASR) method can be applied for determining the in situ stress in hard rocks at great depths, the anelastic strain recovery of oriented cores was measured in six independent directions. The core specimens were taken from four depths within the range of about 2400-4500 m MD at the METI Niitsu well in Japan; the rock materials were mudstone, dolerite, basalt and andesite. For all the rocks the expansional anelastic strains were obtained, the magnitude of the strains in various directions continuously measured for 1 or 2 weeks was of the order of 1000 x 10(-6) in mudstone; in contrast, strains of the other cores did not exceed a few hundred microstrains. These strains were used for a three-dimensional analysis of the principal in situ stresses. At the third depth, the principal stress directions were considered to be affected by fractures pre-existing near the core, and showed the features of a very local stress state. With the exception of this data, the directions determined by the ASR method were in agreement with those determined using other in situ measurement methods. Based on two assumptions, i.e., (i) the rock stress in vertical direction is equal to density-related gravitational overburden stress, (ii) the ratio of anelastic strain recovery compliance of shear deformation mode and the compliance of volumetric deformation mode is equal to 2, the values of the three principal stresses were estimated. The values of the minimum principal stress in the plane perpendicular to the well axis determined in this study were in agreement with those determined based on extended leak-off tests (ELOT or XLOT) conducted at the same well. Therefore, it can be said that the ASR method is well suited for use in directly determining the directions of principal in situ stresses in three dimensions and in estimating the magnitude of the stresses in isotropic rocks at great depths, such as those encountered when drilling deep into a submarine seismogenic zone. (c) 2006 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据