4.7 Article

Collision of a DNA polymer with a small obstacle

期刊

MACROMOLECULES
卷 39, 期 22, 页码 7734-7745

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ma061375t

关键词

-

向作者/读者索取更多资源

Using single molecule fluorescence microscopy, we study the dynamics of an electric-field-driven DNA molecule colliding with a single stationary post. The radius of the obstacle is small compared to the contour length of the molecules. Molecules that achieve hooked configurations which span the obstacle were chosen for study. Four different types of hooked configurations were found: symmetric hairpins with constant extension during unhooking, asymmetric hairpins with constant extension during unhooking, asymmetric hairpins with increasing extension during unhooking, and rare multiply looped entangled configurations. The important physics describing the unhooking dynamics for each classification differ and models are proposed to predict unhooking times. Surprisingly, we find that most collisions do not follow classic rope-on-pulley motion but instead form hairpins with increasing total extension during the unhooking process (called X collisions). Last, we show that unraveling to form a hairpin and center-of-mass motion during unhooking affect the overall center of mass hold-up time during a collision process.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据