3.8 Article

Ant colony optimisation for task matching and scheduling

期刊

出版社

INST ENGINEERING TECHNOLOGY-IET
DOI: 10.1049/ip-cdt:20050196

关键词

-

向作者/读者索取更多资源

PC clusters have recently received considerable interest as cost-effective parallel platforms for CPU-intensive applications. A cluster of PCs generally comprises of a collection of heterogeneous process elements (PEs). To make effective use of a PC cluster, a parallel program, which is characterised by a node- and edge-weighted directed acyclic graph (DAG), can usually be decomposed into a set of precedence-constrained atomic tasks such that PEs are able to accommodate these tasks and minimise the overall program-completion time. Consequently, techniques for task matching and scheduling become extremely important for effectively harnessing the computing power of the target cluster-based system. This work presents a constructive algorithm based on ant colony optimisation (ACO). The proposed algorithm, namely ACO-TMS, adopts a new state transition rule that reduces the time required when finding the satisfactory scheduling results. The proposed algorithm also integrates a local search procedure that proposed to help improve the scheduling results. The performance of this algorithm is demonstrated by comparing it against other existing algorithms, such as the genetic -algorithm-based scheduling method and the dynamic priority scheduling (DPS) heuristic, in terms of overall schedule length of randomly generated DAGs. Experimental results indicate that the proposed algorithm outperforms the genetic algorithm and the DPS heuristic algorithm for high communication to computation and heterogeneous computing environment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据