4.3 Article Proceedings Paper

Biological control of the size and reactivity of catalytic Pd(0) produced by Shewanella oneidensis

出版社

SPRINGER
DOI: 10.1007/s10482-006-9088-4

关键词

flow cytometry; LIVE; DEAD; toxicity; ClO4-; PCB

向作者/读者索取更多资源

The interaction between Shewanella oneidensis MR-1 and the soluble metal Pd(II) during the reductive precipitation of Pd(0) determined the size and properties of the precipitated Pd(0) nanoparticles. Assessment of cell viability indicated that the bioreduction of Pd(II) was a detoxification mechanism depending on the Pd(II) concentration and on the presence and properties of the electron donor. The addition of H-2 in the headspace allowed S. oneidensis to resist the toxic effects of Pd(II). Interestingly, 25 mM formate was a less effective electron donor for bioreductive detoxification of Pd(II), since there was a 2 log reduction of culturable cells and a 20% decrease of viable cells within 60 min, followed by a slow recovery. When the ratio of Pd:cell dry weight (CDW) was below 5:2 at a concentration of 50 mg (-l) Pd(II), most of the cells remained viable. These viable cells precipitated Pd(0) crystals over a relatively larger bacterial surface area and had a particle area that was up to 100 times smaller when compared to Pd(0) crystals formed on non-viable biomass (Pd:CDW ratio of 5:2). The relatively large and densely covering Pd(0) crystals on non-viable biomass exhibited high catalytic reactivity towards hydrophobic molecules such as polychlorinated biphenyls, while the smaller and more dispersed nanocrystals on a viable bacterial carrier exhibited high catalytic reactivity towards the reductive degradation of the anionic pollutant perchlorate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据