4.7 Article

Bacterial lipopolysaccharides induce defense responses associated with programmed cell death in rice cells

期刊

PLANT AND CELL PHYSIOLOGY
卷 47, 期 11, 页码 1530-1540

出版社

OXFORD UNIV PRESS
DOI: 10.1093/pcp/pcl019

关键词

defense response; elicitor; lipopolysaccharide; PAMPs; programmed cell death; rice

向作者/读者索取更多资源

PAMP (pathogen-associated molecular pattern) recognition plays an important role during the innate immune response in both plants and animals. Lipopolysaccharides (LPS) derived from Gram-negative bacteria are representative of typical PAMP molecules and have been reported to induce defense-related responses, including the suppression of the hypersensitive response, the expression of defense genes and systemic resistance in plants. However, the details regarding the precise molecular mechanisms underlying these cellular responses, such as the molecular machinery involved in the perception and transduction of LPS molecules, remain largely unknown. Furthermore, the biological activities of LPS on plants have so far been reported only in dicots and no information is thus available regarding their functions in monocots. In our current study, we report that LPS preparations for various becteria, including plant pathogens and non-pathogens, can induce defense responses in rice cells, including reactive oxygen generation and defense gene expression. In addition, global analysis of gene expression induced by two PAMPs, LPS and chitin oligosaccharide, also reveals a close correlation between the gene responses induced by these factors. This indicates that there is a convergence of signaling cascades downstream of their corresponding receptors. Furthermore, we show that the defense responses induced by LPS in the rice cells are associated with programmed cell death (PCD), which is a finding that has not been previously reported for the functional role of these molecules in plant cells. Interestingly, PCD induction by the LPS was not detected in cultured Arabidopsis thaliana cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据