4.7 Article

Cyclic behavior of AZ31B Mg: Experiments and non-isothermal forming simulations

期刊

INTERNATIONAL JOURNAL OF PLASTICITY
卷 75, 期 -, 页码 39-62

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijplas.2015.06.005

关键词

Magnesium alloy sheet; Tension-compression test; Constitutive model; Non-isothermal; Formability

资金

  1. Mg Material R&D Project for the Super-light Vehicle operating for the execution of WPM (World Premier Materials) Program
  2. National Research Foundation of Korea (NRF) BK21Plus project (Kangwon National University) [22A20130012864]
  3. National Research Foundation of Korea (NRF) Grant - Korea government (MSIP) [2012R1A5A1048294, NRF-2014R1A2A1A11052889]
  4. National Research Foundation of Korea [22A20130012864] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

Magnesium (Mg) alloys have unique room temperature mechanical properties such as yielding asymmetry, anisotropy, and unusual hardening response under strain path change. Mg alloy sheets often represent inferior formability at room temperature due to their limited active slip systems induced from specific microstructure and texture. This low formability is known to be mitigated as temperature increases, which is the result of active non-basal slip systems. Considering these unique properties, Mg alloy sheets has been often formed at 200 degrees C or higher. For optimizing the forming process using Mg alloy sheets, accurate constitutive models describing the unique behavior of the materials under non-proportional loading and non-isothermal temperature conditions are vital. In this paper, the mechanical behavior of AZ31B Mg alloy sheets under in-plane tension compression (or compression-tension) cyclic loading was experimentally measured for various pre-strains and temperatures. Then, a practical hardening model modified from existing advanced hardening law was applied to calculate the stress strain responses and formability in the cross shape die forming under non-isothermal condition. (C) 2015 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据