4.2 Article

Chromosome segregation in fission yeast with mutations in the tubulin folding cofactor D

期刊

CURRENT GENETICS
卷 50, 期 5, 页码 281-294

出版社

SPRINGER
DOI: 10.1007/s00294-006-0095-9

关键词

CENP-B; chromosome segregation; fission yeast; kinetochore; microtubule; tubulin-folding cofactor

资金

  1. NIGMS NIH HHS [GM33787] Funding Source: Medline

向作者/读者索取更多资源

Faithful chromosome segregation requires the combined activities of the microtubule-based mitotic spindle and the multiple proteins that form mitotic kinetochores. Here, we show that the fission yeast mitotic mutant, tsm1-512, is an allele of the tubulin folding chaperone, cofactor D. Chromosome segregation in this and in an additional cofactor D mutant depends on growth conditions that are monitored specifically by the mitotic checkpoint proteins Mad1, 2, 3 and Bub3. The temperature-sensitive mutants we have used disrupt the function of cofactor D to different extents, but both strains form a mitotic spindle in which the poles separate in anaphase. However, chromosome segregation is often unequal, apparently due to a defect in kinetochore-microtubule interactions. Mutations in cofactor D render cells particularly sensitive to the expression levels of a CENP-B-like protein, Abp1p, which works as an allele-specific, high-copy suppressor of cofactor D. This and other genetic interactions between cofactor D mutants and specific kinetochore and spindle components suggest their critical role in establishing the normal kinetochore-microtubule interface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据