4.7 Article

Introducing glutathione biosynthetic capability into Lactococcus lactis subsp cremoris NZ9000 improves the oxidative-stress resistance of the host

期刊

METABOLIC ENGINEERING
卷 8, 期 6, 页码 662-671

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymben.2006.07.004

关键词

glutathione; Lactococcus lactis; oxidative-stress resistance; metabolic engineering

向作者/读者索取更多资源

This study describes how a metabolic engineering approach can be used to improve bacterial stress resistance. Some Lactococcus lactis strains are capable of taking up glutathione, and the imported glutathione protects this organism against H2O2-induced oxidative stress. L. lactis subsp. cremoris NZ9000, a model organism of this species that is widely used in the study of metabolic engineering, can neither synthesize nor take up glutathione. The study described here aimed to improve the oxidative-stress resistance of strain NZ9000 by introducing a glutathione biosynthetic capability. We show that the glutathione produced by strain NZ9000 conferred stronger resistance on the host following exposure to H2O2 (150 mM) and a superoxide generator, menadione (30 mu M). To explore whether glutathione can complement the existing oxidative-stress defense systems, we constructed a superoxide dismutase deficient mutant of strain NZ9000, designated as NZ4504, which is more sensitive to oxidative stress, and introduced the glutathione biosynthetic capability into this strain. Glutathione produced by strain NZ4504(pNZ3203) significantly shortens the lag phase of the host when grown aerobically, especially in the presence of menadione. In addition, cells of NZ4504(pNZ3203) capable of producing glutathione restored the resistance of the host to H2O2-induced oxidative stress, back to the wild-type level. We conclude that the resistance of L. lactis subsp. cremoris NZ9000 to oxidative stress can be increased in engineered cells with glutathione producing capability. (c) 2006 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据