4.7 Article

The limits of Navier-Stokes theory and kinetic extensions for describing small-scale gaseous hydrodynamics

期刊

PHYSICS OF FLUIDS
卷 18, 期 11, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.2393436

关键词

-

向作者/读者索取更多资源

This paper reviews basic results and recent developments in the field of small-scale gaseous hydrodynamics which has received significant attention in connection with small-scale science and technology. We focus on the modeling challenges arising from the breakdown of the Navier-Stokes description, observed when characteristic lengthscales become of the order of, or smaller than, the molecular mean free path. We discuss both theoretical results and numerical methods development. Examples of the former include the limit of applicability of the Navier-Stokes constitutive laws, the concept of second-order slip and the appropriate form of such a model, and how to reconcile experimental measurements of slipping flows with theory. We also review a number of recently developed theoretical descriptions of canonical nanoscale flows of engineering interest. On the simulation front, we review recent progress in characterizing the accuracy of the prevalent Boltzmann simulation method known as direct simulation Monte Carlo. We also present recent variance reduction ideas which address the prohibitive cost associated with the statistical sampling of macroscopic properties in low-speed flows. (c) 2006 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据