4.8 Article

Functional classification, genomic organization, putatively cis-acting regulatory elements, and relationship to quantitative trait loci, of sorghum genes with rhizome-enriched expression

期刊

PLANT PHYSIOLOGY
卷 142, 期 3, 页码 1148-1159

出版社

AMER SOC PLANT BIOLOGISTS
DOI: 10.1104/pp.106.082891

关键词

-

向作者/读者索取更多资源

Rhizomes are organs of fundamental importance to plant competitiveness and invasiveness. We have identified genes expressed at substantially higher levels in rhizomes than other plant parts, and explored their functional categorization, genomic organization, regulatory motifs, and association with quantitative trait loci (QTLs) conferring rhizomatousness. The finding that genes with rhizome-enriched expression are distributed across a wide range of functional categories suggests some degree of specialization of individual members of many gene families in rhizomatous plants. A disproportionate share of genes with rhizome-enriched expression was implicated in secondary and hormone metabolism, and abiotic stimuli and development. A high frequency of unknown-function genes reflects our still limited knowledge of this plant organ. A putative oligosaccharyl transferase showed the highest degree of rhizome-specific expression, with several transcriptional or regulatory protein complex factors also showing high ( but lesser) degrees of specificity. Inferred by the upstream sequences of their putative rice ( Oryza sativa) homologs, sorghum ( Sorghum bicolor) genes that were relatively highly expressed in rhizome tip tissues were enriched for cis-element motifs, including the pyrimidine box, TATCCA box, and CAREs box, implicating the gibberellins in regulation of many rhizome-specific genes. From cDNA clones showing rhizome-enriched expression, expressed sequence tags forming 455 contigs were plotted on the rice genome and aligned to QTL likelihood intervals for ratooning and rhizomatous traits in rice and sorghum. Highly expressed rhizome genes were somewhat enriched in QTL likelihood intervals for rhizomatousness or ratooning, with specific candidates including some of the most rhizome-specific genes. Some rhizomatousness and ratooning QTLs were shown to be potentially related to one another as a result of ancient duplication, suggesting long-term functional conservation of the underlying genes. Insight into genes and pathways that influence rhizome growth set the stage for genetic and/or exogenous manipulation of rhizomatousness, and for further dissection of the molecular evolution of rhizomatousness.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据