4.6 Article

Error-correcting codes for adiabatic quantum computation

期刊

PHYSICAL REVIEW A
卷 74, 期 5, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.74.052322

关键词

-

向作者/读者索取更多资源

Recently, there has been growing interest in using adiabatic quantum computation as an architecture for experimentally realizable quantum computers. One of the reasons for this is the idea that the energy gap should provide some inherent resistance to noise. It is now known that universal quantum computation can be achieved adiabatically using two-local Hamiltonians. The energy gap in these Hamiltonians scales as an inverse polynomial in the number of quantum gates being simulated. Here we present stabilizer codes which can be used to produce a constant energy gap against one-local and two-local noise. The corresponding fault-tolerant universal Hamiltonians are four-local and six-local, respectively, which are the optimal result achievable within this framework.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据