4.6 Article

Formation of giant planets around stars with various masses

期刊

ASTRONOMY & ASTROPHYSICS
卷 458, 期 2, 页码 661-668

出版社

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20053689

关键词

accretion, accretion disks; planetary systems : protoplanetary disks; planetary systems : formation

向作者/读者索取更多资源

We examine the predictions of the core accretion - gas capture model concerning the efficiency of planet formation around stars with various masses. First, we follow the evolution of gas and solids from the moment when all solids are in the form of small grains to the stage when most of them are in the form of planetesimals. We show that the surface density of the planetesimal swarm tends to be higher around less massive stars. Then, we derive the minimum surface density of the planetesimal swarm required for the formation of a giant planet both in a numerical and in an approximate analytical approach. We combine these results by calculating a set of representative disk models characterized by different masses, sizes, and metallicities, and by estimating their capability of forming giant planets. Our results show that the set of protoplanetary disks capable of giant planet formation is larger for less massive stars. Provided that the distribution of initial disk parameters does not depend too strongly on the mass of the central star, we predict that the percentage of stars with giant planets should increase with decreasing stellar mass. Furthermore, we identify the radial redistribution of solids during the formation of planetesimal swarms as the key element in explaining these effects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据