4.6 Article

Characterization of a new β-1,4-endoglucanase gene from the root-knot nematode Meloidogyne incognita and evolutionary scheme for phytonematode family 5 glycosyl hydrolases

期刊

GENE
卷 382, 期 -, 页码 121-128

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.gene.2006.06.023

关键词

gene duplication; intron gain and loss; cellulase; plant parasitism

向作者/读者索取更多资源

Cellulases from plant parasitic nematodes are encoded by multiple gene families and are thought to originate from horizontal gene transfer. Unraveling the evolution of these genes in the phylum will help understanding the evolution of plant parasitism in nematodes. Here we describe a new gene, named MI-eng-2, that encodes a family 5 glycosyl hydrolase (GHF5) with a predicted signal peptide and devoid of linker domain and cellulose-binding domain. The beta-1,4-endoglucanase activity of the protein MI-ENG-2 was confirmed in vitro and the transcription of the gene was localized in the secretory oesophageal glands of infective juveniles, suggesting that MI-ENG-2 is involved in plant cell wall degradation during parasitism. Phylogenetic and exon/intron structure analyses of beta-1,4-endoglucanase genes in the order Tylenchida strengthen the hypothesis that nematode GHF5 genes result from horizontal gene transfer of a bacterial gene with a cellulose-binding domain. GHF5 gene families in Tylenchida result from gene duplications associated with occasional loss of the cellulose-binding domain and the linker domain during their evolution. (c) 2006 Elsevier B.V All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据